Abstract

In High Cycle Fatigue (HCF) limit testing the fatigue limit of a mechanical component is determined by applying cyclical stress of a certain amplitude and noting whether the component breaks or not. Since testing is time consuming and expensive, the number of test samples should be kept to a minimum. A common protocol for finding the fatigue limit distribution is the staircase method, in which the testing amplitude is decreased or increased with a fixed step depending on whether the component in the previous test did break or not. We have developed and implemented an alternative protocol, based on Bayesian experimental design, in which the amplitude of each test is selected to maximize the expected information gain of the test. Simulations show that with the proposed method the number of required test samples is significantly decreased as compared to with the staircase method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.