Abstract
We propose a general method for optimally approximating an arbitrary matrix M by a structured matrix T (circulant, Toeplitz/Hankel, etc.) and examine its use for estimating the spectra of genomic linkage disequilibrium matrices. This application is prototypical of a variety of genomic and proteomic problems that demand robustness to incomplete biosequence information. We perform a simulation study and corroborative test of our method using real genomic data from the Mouse Genome Database [1]. The results confirm the predicted utility of the method and provide strong evidence of its potential value to a wide range of bioinformatics applications. Our optimal general matrix approximation method is expected to be of independent interest to an even broader range of applications in applied mathematics and engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.