Abstract

Moving target defense, as a “game-changing” security technique for network warfare, thwarts the apparent certainty of attackers by transforming the network resource vulnerabilities. In order to enhance the defense of unknown security threats, a novel of optimal strategy selection approach to moving target defense based on Markov robust game is first proposed in this paper. Firstly, moving target defense model based on moving attack and exploration surfaces is defined. Thus, the random emerging of vulnerabilities is described, as well as the cognitive and behavioral difference of offensive and defensive sides caused by defensive transformation. Based on it, Markov robust game model is constructed to depict the multistage and multistate features of moving target defense confrontation, in which the unknown prior information in incomplete information assumption are illustrated by combining Markov decision process with robust game theory. Further, the existence of optimal strategy of Markov robust game is proved. Additionally, by equivalent converting optimal strategy selection into a nonlinear programming problem, an efficient optimal defensive strategy selection algorithm is designed. Finally, simulation and deduction of the proposed approach are given in the case study so as to demonstrate the feasibility of constructed game model and effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.