Abstract

In stochastic time–frequency analysis, the covariance function is often estimated from only one observed realization with the use of a kernel function. For processes in continuous time, this can equivalently be done in the ambiguity domain, with the advantage that the mean square error optimal ambiguity kernel can be computed. For processes in discrete time, several ambiguity domain definitions have been proposed. It has previously been reported that in the Jeong–Williams ambiguity domain, in contrast to the Nutall and the Claasen–Mecklenbräuker ambiguity domain, any smoothing covariance function estimator can be represented as an ambiguity kernel function. In this paper, we show that the Jeong–Williams ambiguity domain cannot be used to compute the mean square error (MSE) optimal covariance function estimate for processes in discrete time. We also prove that the MSE optimal estimator can be computed without the use of the ambiguity domain, as the solution to a system of linear equations. Some properties of the optimal estimator are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.