Abstract
This paper identifies spectral lines from X-ray to IR wavelengths which are optimally suited to measuring vector magnetic fields as high as possible in the solar atmosphere. Instrumental and Earth's atmospheric properties, as well as solar abundances, atmospheric properties, and elementary atomic physics are considered without bias toward particular wavelengths or diagnostic techniques. While narrowly focused investigations of individual lines have been reported in detail, no assessment of the comparative merits of all lines has ever been published. Although in the UV, on balance the Mg+ h and k lines near 2800 Å are optimally suited to polarimetry of plasma near the base of the solar corona. This result was unanticipated, given that longer-wavelength lines offer greater sensitivity to the Zeeman effect. While these lines sample optical depths photosphere to the coronal base, we argue that cores of multiple spectral lines provide a far more discriminating probe of magnetic structure as a function of optical depth than the core and inner wings of a strong line. Thus, together with many chromospheric lines of Fe+ between 2585 Å and the h line at 2803 Å, this UV region promises new discoveries concerning how the magnetic fields emerge, heat, and accelerate plasma as they battle to dominate the force and energy balance within the poorly understood chromosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.