Abstract

The Inverse Synthetic Aperture Radar (ISAR) has been proven to be an effective tool for space target sensing due to its capability of performing high-resolution imaging. Since the component information of the spacecraft is key to the identification of the target and diagnosis of its status, ISAR images with a clear and complete representation of the typical components are much desired. This requires a selection of the imaging time, during which a certain spacecraft component has a good projection on the ISAR image plane with the shape feature well conserved and a high resolution. In addition, a fully automated implementation with a high computational efficiency is also highly preferred for on-orbit operations so as to improve the intelligence level of the space-borne system. We propose a bicriterion-based automated optimal imaging time-selection method for the space-borne ISAR, which is seeking the slow time section of the data that result in the best image. A good image means a high azimuth resolution and the best presentation of the solar panels. One criterion is the Maximum Doppler Spread (MDS), which indicates the maximum Effective Rotational Velocity (ERV) leading to high image resolution, but it is influenced by the satellite attitude. of the spacecraft. The other is the Maximum Component Area (MCA), which is defined to indicate the completeness of the component considered. The radar echoes are processed sequentially by way of a sliding window. The interval with the co-maximization of the DS and CA is selected, and fine processing is performed further to obtain the best images. The results of the simulation experiments show that the proposed method can achieve spacecraft images with the solar panels presented the best. The computational complexity is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.