Abstract
More utilities, energy providers, and governments are considering the transition to 100% renewable or carbon-free generation to satisfy electricity demand. This transition requires consideration of numerous factors including cost, resource adequacy, and geographical location, among others. Therefore, models that can explore the optimality of tradeoffs between multiple factors are crucial for planning this transition. An optimization problem formulation is proposed to analyze the amount of renewable generation and energy storage required to balance 100% of a utility's electricity demand on an hourly timescale over multiple years, while minimizing a desired cost. This formulation accounts for geographical location and accommodates regional energy trading, and it enables analysis of important metrics for planning, such as firm capacity, capacity factors, land area requirements, and amount of curtailed generation. This optimization-based approach is used to explore case studies in New Mexico, which is an area with significant potential for solar and wind generation in the United States. Considering multiple years of historical meteorological data and electricity demand data, results show that the amount of renewable generation required is an order of magnitude larger than the average demand, and that most of the generation is curtailed, which motivates a regional energy trading approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.