Abstract

Identifying a maximally separated setof signals is important in the design of modems. The notion of optimality is dependent on the model chosen to describe noise in the measurements; while some analytic results can be derived under the assumption of Gaussian noise, no such techniques are known for choosing signal sets in the non-Gaussian case. To obtain numerical solutions for non-Gaussian detectors, minimax problems are transformed into nonlinear programs, resulting in a novel formulation yielding problems with relatively few variables and many inequality constraints. Using sequential quadratic programming, optimal signal sets are obtained for a variety of noise distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.