Abstract

This study aims to develop an optimal signal control algorithm for signalized intersections using individual vehicle’s trajectory data under the vehicle-to-infrastructure (V2I) communication environment. The optimal signal control algorithm developed in this study consists of three modules, namely, a phase group length computation module, a split distribution module, and a phase sequence assignment module. A set of analyses using a microscopic simulation model, VISSIM, was conducted for evaluating the effectiveness of the V2I-based optimal signal control algorithm proposed in this study. The analysis results show that the performance of the V2I-based optimal signal control algorithm is superior to the actuated as well as the fixed signal control methods in an isolated intersection and a 2X3 signalized intersection network. In addition, this study investigated the minimum market penetration rate of V2I equipped vehicles for which the V2I-based optimal signal control algorithm is applicable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.