Abstract
Wastewater-based epidemiology (WBE) has great potential to monitor community public health, especially during pandemics. However, it faces substantial hurdles in pathogen surveillance through WBE, encompassing data representativeness, spatiotemporal variability, population estimates, pathogen decay, and environmental factors. This paper aims to enhance the reliability of WBE data, especially for early outbreak detection and improved sampling strategies within sewer networks. The tool implemented in this paper combines a monitoring model and an optimization model to facilitate the optimal selection of sampling points within sewer networks. The monitoring model utilizes parameters such as feces density and average water consumption to define the detectability of the virus that needs to be monitored. This allows for standardization and simplicity in the process of moving from the analysis of wastewater samples to the identification of infection in the source area. The entropy-based model can select optimal sampling points in a sewer network to obtain the most specific information at a minimum cost. The practicality of our tool is validated using data from Hildesheim, Germany, employing SARS-CoV-2 as a pilot pathogen. It is important to note that the tool's versatility empowers its extension to monitor other pathogens in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.