Abstract

The Integrated Energy System (IES) enables integrated control and coordinated optimization of multiple energy flows. Due to the complexity of dynamic characteristics of multiple energy flows and the significant differences in time scales, thermodynamic problems occur during the operation of the system. In this paper, we propose an IES operation method that comprehensively considers thermodynamics to reduce the impact of thermal transmission delay on the system's operational strategy, including modeling, evaluation, and scheduling programs. Firstly, an IES model is established to describe the dynamic characteristics of the energy supply network. Secondly, a two-stage optimization scheduling model considering thermal transmission delay is established to reduce the impact of thermal transmission delay on the operation decisions of IES, and the thermal power imbalance rate index is proposed to measure the impact of thermodynamics. Finally, the proposed method's effectiveness is validated by utilizing a comprehensive energy system as an example and implementing it on the MWORKS platform using the Modelica and Julia languages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.