Abstract

Markov decision processes (MDP) with finite state and action space have often been used to model sequential decision making over time in dairy herds. However, the length of each stage has been at least 1 mo, resulting in models that do not support decisions on a daily basis. The present paper describes the first step of developing an MDP model that can be integrated into a modern herd management system. A hierarchical MDP was formulated for the dairy cow replacement problem with stage lengths of 1 d. It can be used to assist the farmer in replacement decisions on a daily basis and is based on daily milk yield measurements that are available in modern milking systems. Bayesian updating was used to predict the performance of each cow in the herd and economic decisions were based on the prediction. Moreover, parameters in the model were estimated using data records of the specific herd under consideration. This includes herd-specific lactation curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.