Abstract

During the calibration of the system matrix of a Stokes polarimeter using reference polarization states (RPSs) and pseudo-inversion estimation method, the measurement intensities are usually noised by the signal-independent additive Gaussian noise or signal-dependent Poisson shot noise, the precision of the estimated system matrix is degraded. In this paper, we present a paradigm for selecting RPSs to improve the precision of the estimated system matrix in the presence of both types of noise. The analytical solution of the precision of the system matrix estimated with the RPSs are derived. Experimental measurements from a general Stokes polarimeter show that accurate system matrix is estimated with the optimal RPSs, which are generated using two rotating quarter-wave plates. The advantage of using optimal RPSs is a reduction in measurement time with high calibration precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.