Abstract

This paper introduces an innovative optimal energy management strategy tailored for a hybrid electric-powered hydraulic excavator system. The aim is to bolster power performance, extend the lifespan of power sources, and optimize hydrogen usage. In this system, the fuel cell serves as the primary power source, while integrating supercapacitors and batteries offers benefits such as enhancing power performance and storing regenerative energy for future use. To efficiently distribute power among these three sources and maximize the utilization of regenerative energy, we propose an energy management strategy. This strategy combines fuzzy logic control with a rule-based algorithm. Moreover, we optimize the parameters of the fuzzy logic system using a combination of the backtracking search algorithm and sequential dynamic programming. This optimization aims to reduce hydrogen consumption and prolong the lifespan of the power sources. Simulation results demonstrate that our proposed energy management strategy significantly enhances vehicle performance, improves fuel economy of the hybrid electric-powered hydraulic excavator system, and enhances the durability and efficiency of the battery and supercapacitor systems within the fuel cell system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.