Abstract

This paper develops a branch-flow based optimal power flow (OPF) problem for multi-phase distribution networks that allows for tap selection of wye, closed-delta, and open-delta step-voltage regulators (SVRs). SVRs are assumed ideal and their taps are represented by continuous decision variables. To tackle the non-linearity, the branch-flow semidefinite programming framework of traditional OPF is expanded to accommodate SVR edges. Three types of non-convexity are addressed: (a) rank-1 constraints on non-SVR edges, (b) nonlinear equality constraints on SVR power flows and taps, and (c) trilinear equalities on SVR voltages and taps. Leveraging a practical phase-separation assumption on the SVR secondary voltage, novel McCormick relaxations are provided for (c) and certain rank-1 constraints of (a), while dropping the rest. A linear relaxation based on conservation of power is used in place of (b). Numerical simulations on standard distribution test feeders corroborate the merits of the proposed convex formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.