Abstract

Contemporary wireless systems combine aspects of network theory such as scheduling, throughput, and delay as well as information theory aspects such as capacity, coding, and power control. Design of such systems requires joint optimization of both network and physical layers. In this paper, we analyze a single-user communication system composed of a transmitter preceded by a queue used for retransmissions, Gaussian block-fading channel, and a receiver. The system average delay is optimized by using combined power/rate control under average power constraints. Dynamic programming is used for calculating the optimized policies using numerical analysis as well as analytic analysis for asymptotically large buffer size. Asymptotic results are obtained for all combinations of fixed or variable power and rate controls. The most important result extends the water-filling result for systems with average delay constraint

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.