Abstract

In the literature, all investigations dealing with regulator design in the AVR loop observe the AVR system as a single input single output (SISO) system, where the input is the generator reference voltage, while the output is the generator voltage. Besides, the regulator parameters are determined by analyzing the terminal generator voltage response for a step change from zero to the rated value of the generator voltage reference. Unlike literature approaches, in this study, tuning of the AVR controllers is conducted while modeling the AVR system as a double input single output (DISO) system, where the inputs are the setpoint of the generator voltage and the step disturbance on the excitation voltage, while the output is the generator voltage. The transfer functions of the generator voltage dependence on the generator voltage reference value and the excitation voltage change were derived in the developed DISO-AVR model. A novel objective function for estimating DISO-AVR regulator parameters is proposed. Also, a novel metaheuristic algorithm named hybrid simulated annealing and gorilla troops optimization is employed to solve the optimization problem. Many literature approaches are compared using different regulator structures and practical limitations. Furthermore, the experimental results of 120 MVA synchronous generators in HPP Piva (Montenegro) are presented to show the drawbacks of the literature approaches that observe generator setpoint voltage change from zero to the rated value. Based on the presented results, the proposed procedure is efficient and strongly applicable in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.