Abstract
Terahertz cross correlation spectroscopy (THz-CCS) systems using broadband incoherent light as the pumping source have received increasing attention from researchers in recent years. However, a comprehensive and in-depth understanding of THz-CCS is still needed to obtain a detailed optimization scheme. Here we systematically investigate the influences of the detection parameters, light propagation process, and pump source on the CCS signals. The impacts of the filter slopes and time constants in lock-in detection are revealed for optimizing the signal-to-noise ratio and bandwidth of the THz signal. By varying the optical fiber length and dispersion coefficient, the dispersion insensitivity of THz-CCS was experimentally demonstrated. The comparison of different pump sources (SLD and ASE) shows that the over-wide and non-flat pump spectrum may attenuate the CCS signal because of the energy waste brought by the photomixing process under the limited bandwidth of the photomixer. Our research may lead to a deeper understanding and further optimization of the THz-CCS system, which will promote the development and widespread application of what is to the best of our knowledge a new technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.