Abstract

Thermal optimization of a stack of printed circuit boards using entropy generation minimization (EGM) method is presented. The study consists of two parts. One is focused on the entropy generation of a module in periodically fully-developed channel flow (PDF), while the other is the optimization applied to electronic packages composed of a stack of printed circuit boards. In the process of optimizing electronics packaging, consideration is given to two constraints which are the maximum junction temperature specified by a chip manufacturer and the allowable pressure difference across the channel maintained by cooling fans. The Reynolds number, block geometry and bypass flow area ratio are varied to search for an optimal channel spacing using the EGM method whose validity is borne out by comparing with those obtained by the conventional thermal optimization (or overall thermal conductance) method. A dimensionless optimal board spacing parameter C is derived which involves the relative migration speed (or time) of heat transfer and viscous friction over the PDF channel length. A correlation equation is derived which expresses C in terms of the Reynolds number and block geometry. This equation can be employed in the optimal design of electronic packages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.