Abstract

Solar water splitting is a promising way of producing H2 from the renewable natural resources, and heterostructure photocatalysts have been widely investigated in photocatalytic applications. In this work, flower-shaped CuxZn1-xS composite photocatalysts were prepared with various copper contents and then further thermally oxidized under controlled oxygen atmosphere. The oxidized composite catalysts formed the Z-scheme assisted type-II heterosystem, which resulted in efficient photo-generated charge transfer. The maximum H2 production rate was determined as 595 μmol/g/h from the optimally oxidized CuxZn1-xS photocatalyst. This could be mainly attributed to the highest Cu2O crystal fraction in the total copper oxides phases as confirmed by XRD measurement. High light absorption and low charge recombination in heterostructure system were crucial points to improve solar harvesting efficiency in water splitting reactions. Therefore, overall photocatalytic efficiency of the oxidized composite photocatalysts can be enhanced by optimizing their atomic compositions and crystalline phase fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.