Abstract
We identify the optimal operating conditions of an entangling two-qubit gate realized by capacitive coupling of two superconducting charge qubits in a transmission line resonator (the so-called ‘transmons’). We demonstrate that the sensitivity of the optimized gate to 1/f flux and critical current noise is suppressed to leading order. The procedure only requires a preliminary estimate of the 1/f noise amplitudes. No additional control or bias line beyond those used for the manipulation of individual qubits is needed. The proposed optimization is effective also in the presence of relaxation processes and of spontaneous emission through the resonator (Purcell effect).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.