Abstract

SUMMARYThree-DOF manipulators were employed for juggling of polygonal objects in order to have full control over object's configuration. Dynamic grasp condition is obtained for the instances that the manipulators carry the object on their palms. Manipulation problem is modeled as a nonlinear optimal control problem. In this optimal control problem, time of free flight is used as a free parameter to determine throw and catch times. Cost function is selected to get maximum covered horizontal distance using minimum energy. By selecting third-order polynomials for joint motions, the problem is changed to a constrained parameter selection problem. Adaptive particle swarm optimization method is consequently employed to solve the optimization problem. Effectiveness of the optimization algorithm is verified by a set of simulations in MSC. ADAMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.