Abstract

Luenberger's minimal-order observer is considered as an alternate to the Kalman filter for obtaining state estimates in linear discrete-time stochastic systems. The general solution to the problem of constructing the optimal minimal-order observer is presented for systems having white noise disturbances. In the special case of no measurement noise the observer estimation errors are shown to be identical with those of the corresponding Kalman filter. Estimation errors comparable with the Kalman filter are obtained when measurement noise is not excessive. The observer solution is extended to systems for which the noise disturbances are time-wise correlated processes of the Markov type. In considering correlated noise inputs, the system state equations are not augmented as is done in the usual Kalman filtering theory. The observer solution, modified appropriately to account for the time-wise correlation of the noise inputs, yields minimum mean-square estimates of the state vector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.