Abstract
In recent years, there has been a growing interest in using networks of Unmanned Aerial Vehicles (UAV) that collectively perform complex tasks for diverse applications. An important challenge in realizing UAV networks is the need for a communication platform that accommodates rapid network topology changes. For instance, a timely prediction of network topology changes can reduce communication link loss rate by setting up links with prolonged connectivity. In this work, we develop an optimal tracking policy for each UAV to perceive its surrounding network configuration in order to facilitate more efficient communication protocols. More specifically, we develop an algorithm based on particle swarm optimization and Kalman filtering with intermittent observations to find a set of optimal tracking policies for each UAV under time-varying channel qualities and constrained tracking resources such that the overall network estimation error is minimized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.