Abstract

We consider distributed private data analysis, where n parties each holding some sensitive data wish to compute some aggregate statistics over all parties’ data. We prove a tight lower bound for the private distributed summation problem. Our lower bound is strictly stronger than the prior lower-bound result by Beimel, Nissim, and Omri published in CRYPTO 2008. In particular, we show that any n-party protocol computing the sum with sparse communication graph must incur an additive error of $\Omega(\sqrt{n})$ with constant probability, in order to defend against potential coalitions of compromised users. Furthermore, we show that in the client-server communication model, where all users communicate solely with an untrusted server, the additive error must be $\Omega(\sqrt{n})$ , regardless of the number of messages or rounds. Both of our lower-bounds, for the general setting and the client-to-server communication model, are strictly stronger than those of Beimel, Nissim and Omri, since we remove the assumption on the number of rounds (and also the number of messages in the client-to-server communication model). Our lower bounds generalize to the (ε, δ) differential privacy notion, for reasonably small values of δ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.