Abstract

In generation expansion planning, reliability level is the key criterion to ensure enough generation above peak demand in case there are any generation outages. This reliability criterion must be appropriately optimized to provide a reliable generation system with a minimum generation cost. Currently, a method to determine an optimal reliability criterion is mainly focused on reserve margin, an accustomed criterion used by several generation utilities. However, Loss of Load Expectation (LOLE) is a more suitable reliability criterion for a generation system with a high proportion of renewable energy since it considers both the probabilistic characteristics of the generation system and the entire load’s profile. Moreover, it is also correlated with the reserve margin. Considering the current fuel supply situation, a probabilistic model based on Bayes’ Theorem is also proposed to incorporate fuel supply unavailability into the probabilistic criterion. This paper proposes a method for determining the optimal LOLE along with a model that incorporates fuel supply unavailability into consideration. This method is tested with Thailand’s Power Development Plan 2018 revision 1 to demonstrate numerical examples. It is found that the optimal LOLE of the test system is 0.7 day/year, or shifted to 0.55 day/year in the case of considering the fuel supply unavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.