Abstract
AbstractThree‐terminal (3T) tandem solar cells require an adapted module integration scheme in order to explore their full efficiency potential. The three terminals allow to extract the power of the top and bottom cell separately. In a cell string, the wide bandgap top cells are interconnected in parallel to multiple bottom cells resulting in a parallel/series interconnection. This interconnection scheme affects the operation of the subcells, the resulting current path between the subcells, the layout of the cell interconnects, and the system level. Here, we analyze by simulations and experiments the aspects of the module integration of series‐ and reverse‐connected 3T cells with their practical impact on module processes and performance as well as the effect of varying voltage ratios on the string‐end losses. If the subcells are connected in series, the module integration requires insulation layers and significantly longer interconnects compared to devices with reverse‐connected subcells. Tandem devices with a reverse connection and a voltage ratio between top and bottom cell of 2:1 allow a lean interconnection design and low integration losses. We present an approach for the integration of bypass diodes for the protection against shading effects that allow to minimize string‐end and shading losses for a system of modules featuring 3T cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Photovoltaics: Research and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.