Abstract
External control of a genetic regulatory network is used for the purpose of avoiding undesirable states, such as those associated with disease. Heretofore, intervention has focused on finite-horizon control, i.e., control over a small number of stages. This paper considers the design of optimal infinite-horizon control for context-sensitive probabilistic Boolean networks (PBNs). It can also be applied to instantaneously random PBNs. The stationary policy obtained is independent of time and dependent on the current state. This paper concentrates on discounted problems with bounded cost per stage and on average-cost-per-stage problems. These formulations are used to generate stationary policies for a PBN constructed from melanoma gene-expression data. The results show that the stationary policies obtained by the two different formulations are capable of shifting the probability mass of the stationary distribution from undesirable states to desirable ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.