Abstract

Crowdsourcing systems are popular for solving large-scale labeling tasks with low-paid workers. We study the problem of recovering the true labels from the possibly erroneous crowdsourced labels under the popular Dawid–Skene model. To address this inference problem, several algorithms have recently been proposed, but the best known guarantee is still significantly larger than the fundamental limit. We close this gap by introducing a tighter lower bound on the fundamental limit and proving that the belief propagation (BP) exactly matches the lower bound. The guaranteed optimality of BP is the strongest in the sense that it is information-theoretically impossible for any other algorithm to correctly label a larger fraction of the tasks. Experimental results suggest that the BP is close to optimal for all regimes considered and improves upon competing the state-of-the-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.