Abstract

The problem of optimally measuring an analytic function of unknown local parameters each linearly coupled to a qubit sensor is well understood, with applications ranging from field interpolation to noise characterization. Here we resolve a number of open questions that arise when extending this framework to Mach-Zehnder interferometers and quadrature displacement sensing. In particular, we derive lower bounds on the achievable mean square error in estimating a linear function of either local phase shifts or quadrature displacements. In the case of local phase shifts, these results prove, and somewhat generalize, a conjecture by Proctor []. For quadrature displacements, we extend proofs of lower bounds to the case of arbitrary linear functions. We provide optimal protocols achieving these bounds up to small (multiplicative) constants and describe an algebraic approach to deriving new optimal protocols, possibly subject to additional constraints. Using this approach, we prove necessary conditions for the amount of entanglement needed for any optimal protocol for both local phase and displacement sensing. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.