Abstract

Usually, setting the appropriate optimal gains for Stability Augmentation System and Control Augmentation System for aircrafts depends on the system knowledge by the engineer. When this setting depends on tuning gains such as Proportional Integrator Derivative control or weights as in Linear Quadratic Regulator method, the engineer will use the trial and error process, which is time consuming procedure. In this research, a study of modeling and control system design will be conducted for a business aircraft using heuristic algorithm. A linear model of Cessna Citation aircraft was designed. Then a Linear Quadratic Regulator technology was used to achieve desirable dynamic characteristics with respect to the flying qualities requirements on the stability augmentation system for the Cessna Citation X aircraft. The Proportional Integral controller was further used in the Control Augmentation System, the weighting matrix of the LQR method and the PI parameters were optimised by using the differential evolutions method. The heuristic algorithm here used has given very good results. This algorithm was used in this form for the first time to optimize linear quadratic regulation and proportional Integral controllers on an aircraft control, using one fitness function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.