Abstract

A new method is described for the determination of optimal spacecraft trajectories in an inverse-square field using finite, fixed thrust. The method employs a recently developed direct optimization technique that uses a piecewise polynomial representation for the state and controls and collocation, thus converting the optimal control problem into a nonlinear programming problem, which is solved numerically. This technique has been modified to provide efficient handling of those portions of the trajectory that can be determined analytically, i.e., the coast arcs. Among the problems that have been solved using this method are optimal rendezvous and transfer (including multirevolution cases) and optimal multiburn orbit insertion from hyperbolic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.