Abstract

ABSTRACTIn the design of constant-stress life-testing experiments, the optimal allocation in a multi-level stress test with Type-I or Type-II censoring based on the Weibull regression model has been studied in the literature. Conventional Type-I and Type-II censoring schemes restrict our ability to observe extreme failures in the experiment and these extreme failures are important in the estimation of upper quantiles and understanding of the tail behaviors of the lifetime distribution. For this reason, we propose the use of progressive extremal censoring at each stress level, whereas the conventional Type-II censoring is a special case. The proposed experimental scheme allows some extreme failures to be observed. The maximum likelihood estimators of the model parameters, the Fisher information, and asymptotic variance–covariance matrices of the maximum likelihood estimates are derived. We consider the optimal experimental planning problem by looking at four different optimality criteria. To avoid the computational burden in searching for the optimal allocation, a simple search procedure is suggested. Optimal allocation of units for two- and four-stress-level situations is determined numerically. The asymptotic Fisher information matrix and the asymptotic optimal allocation problem are also studied and the results are compared with optimal allocations with specified sample sizes. Finally, conclusions and some practical recommendations are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.