Abstract

This paper investigates the optimal design of the Maxwell tuned mass-damper-inerter (M-TMDI) for mitigating the vortex-induced vibration (VIV) in bridges. The M-TMDI consists of a three-element tuned mass damper (TMD) and an inerter. Considering that the bridge deck is a multiple-degree-of-freedom (DOF) system, the inerter location is considered as a design variable of the M-TMDI in our study. The optimal parameters of a specific M-TMDI, in which the end of the inerter is connected to the fixed ground, are analytically given based on a two-DOF system. Furthermore, the optimal parameters of the M-TMDI with any inerter location on the bridge deck are developed in closed-form based on a multiple-DOF system. Finally, numerical analysis on a continuous steel box-girder bridge subjected to the VIV is performed to confirm the optimal design and superiority of the M-TMDI control. The result demonstrates that the optimally designed M-TMDI outperforms the TMD and three-element TMD in the transient amplitude mitigation, steady-state amplitude mitigation, stroke limitation, and static stretching reduction. The optimal control effect of the M-TMDI greatly depends on the defined effective mass ratio, which is function of the inerter location, mode shape, physical mass, and inertial mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.