Abstract
The problem of optimal structural design having linked discrete variables is addressed. For such applications, when a discrete value for a variable is selected, values for other variables linked to it must also be selected from a table. The design of steel structures using available sections is a major application area of such problems. Three strategies that combine a continuous variable optimization method with a genetic algorithm, simulated annealing, and branch and bound method are presented and implemented into a computer program for their numerical evaluation. Three structural design problems are solved to study the performance of the proposed methods. CPU times for solution of the problems with discrete variables are large. Strategies are suggested to reduce these times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.