Abstract

This paper deals with an optimal design of a surface-mounted permanent magnet synchronous machine (SMPMSM) using a genetic algorithm (GA) method. To analyze the characteristic of permanent magnet (PM) motors, the classical optimization method, such as the finite element method (FEM), is intensively used. In this design, a three-phase 12-slot/8-pole PM motor is established with FEM with radial magnetization pattern. Then, the GA is used to search the optimality of SMPMSM machine design. In the final analysis, the optimal new design of SMPMSM is demonstrated by comparing it with the initial design that is investigated by FEM. The result of induced back-EMF, total harmonic distortion, and magnetic flux density of optimal design are compared with the initial design to show the advantages of GA optimization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.