Abstract

An algorithm for the design of optimal one-dimensional (1-D) and two-dimensional (2-D) FIR filters over a discrete coefficient space is proposed. The algorithm is based on the observation that the equiripple frequencies of a subproblem (SP) in the branch and bound (BaB) algorithm are closely related to those of neighboring SPs. By using the relationship among the SPs, the proposed algorithm reduces the number of constraints required for solving each SP. Thus, the overall computational load for the design of FIR filters with discrete coefficients is significantly alleviated, compared with the conventional BaB algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.