Abstract

Lactose is the major carbohydrate in milk, and similarly to other sugars, it can exist as two anomers in solution, the α and β forms, with a ratio depending on factors including temperature and pH (mutarotation equilibrium). Lactose is extracted from whey mostly to prevent environmental pollution. In fact, the presence of this sugar can contribute to a dramatic increase in the biological oxygen demand (BOD) of whey, making its direct disposal potentially dangerous for the environment. However, preserving our ecosystem is not the only reason why lactose is recovered. Purified lactose is in fact a high-value product that is commonly used as an excipient in pharmaceutical formulations and as a carrier in dry-powder inhalers. Despite the increasing interest that lactose crystallization has recently received, a full understanding of this process is still missing, particularly the link between the process parameters of the crystallization step and the properties of the final product in terms of crystalline stru...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.