Abstract
The structural performance of any building design is often dependent on the geometrical shape, which affects its behavior and stability. Structural consideration and optimization in the conceptual stage of the design process can lead to better solutions and design exploration. In this paper, a design approach for generating and structurally optimizing the geometrical form in the conceptual design phase is presented. The method is applied to a canopy of an ecological island (waste collection center in Rome, Italy). We demonstrate how parametric structural design can facilitate the decision-maker to generate and analyze the optimal design solutions rapidly in the conceptual stage of the design process. Fully parametric models are created in a Rhinoceros3D® environment and interfaced with in-house built algorithms, and Finite Element simulations are performed in DubalRFEM. An ecological island’s canopy has been completely redesigned with a Genetic Algorithm and a Dynamic Relaxation Algorithm, resulting in a free-form shape-resistant structure. Finally, the shape-optimized canopy meets various requirements (structural, functional, formal) that improve structural efficiency and design collaboration, such as in the role of the architect and engineer in the design process and in the relationship between the designer and design tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.