Abstract

In this paper, the working frequency band gap of ultrasonic motor (USM) was investigated under finite element model and experimental prototype. The findings indicate that the discrepancy between theoretical analysis and experimental test is mainly related to the fixation conditions of stator. This work proposes a new geometrical symmetrical stator for standing-wave-type linear USM to reduce the discrepancy. The first longitudinal and the second bending modes of stator are combined to drive the USM. Parameterized finite element model with actual boundary is developed to analyze and optimize the stator performance. The results show that the gap between working frequencies can be substantial reduced compared to the initial design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.