Abstract
In the common nonparametric regression model we consider the problem of constructing optimal designs, if the unknown curve is estimated by a smoothing spline. A special basis for the space of natural splines is introduced and the local minimax property for these splines is used to derive two optimality criteria for the construction of optimal designs. The first criterion determines the design for a most precise estimation of the coefficients in the spline representation and corresponds to D-optimality, while the second criterion is the G-optimality criterion and corresponds to an accurate prediction of the curve. Several properties of the optimal designs are derived. In general, D- and G-optimal designs are not equivalent. Optimal designs are determined numerically and compared with the uniform design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.