Abstract
In this paper, we consider a viscoelastic equation with minimal conditions on the relaxation function g, namely, , where H is an increasing and convex function near the origin and ξ is a nonincreasing function. With only these very general assumptions on the behavior of gat infinity, we establish optimal explicit and general energy decay results from which we can recover the optimal exponential and polynomial rates when H(s)=sp and p covers the full admissible range [1,2). We get the best decay rates expected under this level of generality, and our new results substantially improve several earlier related results in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.