Abstract
ABSTRACTComposite structures with cutouts (like panels with holes) are a challenge to design because discontinuities of this kind provoke stress concentrations and become critical regions. With curved fibres, the effect of these discontinuities can be decreased by choosing the fibre paths properly. In this article, fibre-path optimization to improve the buckling load of laminated composite panels with cutouts is studied. Two fibre path parameterizations are tested: the usual curvilinear Cartesian and the radial one, proposed in this article, in which the fibre orientations vary linearly with the Euclidean distance from the centre of the panel. To reduce the simulation costs associated with the optimization, the Efficient Global Optimization (EGO) algorithm is used. EGO is a technique based on a stochastic process approach (Kriging) that approximates expensive-to-evaluate functions and sequentially maximizes the expected improvement to update the surrogate at each iteration. A stiffened panel with a cutout subjected to compression and in-plane shearing loads is analysed. The results show that the buckling load when curved fibres are used is substantially higher than the buckling load for straight-fibre laminates. In addition, the optimization framework indicates a low final computational burden.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.