Abstract

<p style='text-indent:20px;'>We consider the susceptible-infected-removed (SIR) epidemic model and apply optimal control to it successfully. Here two control inputs are considered, so that the infection rate is decreased and infected individuals are removed. Our approach is to reduce computation of the optimal control input to that of the stable manifold of an invariant manifold in a Hamiltonian system. The situation in which the target equilibrium has a center direction is very different from similar previous work. Some numerical examples in which the computer software AUTO is used to numerically compute the stable manifold are given to demonstrate the usefulness of our approach for the optimal control in the SIR model. Our study suggests how we can decrease the number of infected individuals quickly before a critical situation occurs while keeping social and economic burdens small.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.