Abstract

Patterns arising from the reaction–diffusion epidemic model provide insightful aspects into the transmission of infectious diseases. For a classic SIR reaction–diffusion epidemic model, we review its Turing pattern formations with different transmission rates. A quantitative indicator, “normal serious prevalent area (NSPA)”, is introduced to characterize the relationship between patterns and the extent of the epidemic. The extent of epidemic is positively correlated to NSPA. To effectively reduce NSPA of patterns under the large transmission rates, taken removed (recovery or isolation) rate as a control parameter, we consider the mathematical formulation and numerical solution of an optimal control problem for the SIR reaction–diffusion model. Numerical experiments demonstrate the effectiveness of our method in terms of control effect, control precision and control cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.