Abstract

During the past two decades, considerable research effort has been spent to convincingly prove that the use of aerodynamic forces to assist in the orbital transfer can significantly reduce the fuel consumption as compared to the pure propulsive mode. Since in this aeroassisted mode, preliminary maneuvers in the vacuum effect the resulting performance in the atmospheric phase, and vice versa, the two, space and atmospheric maneuvers, are, to a great extent, coupled. This paper summarizes, via optimal control theory, the fundamental results in the problem of orbital transfer using combined propulsive and aerodynamic forces. For the atmospheric phase, the use of Chapman's variables reduced the number of the physical characteristics of the vehicle and the atmosphere to a minimum and hence allows a better generalization of the results. The paper concludes with some illustrative examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.