Abstract
This paper proposes an optimal energy management strategy (EMS) for DC microgrid. The studied system presents a commercial building power system that combines a photovoltaic array (PV), fuel cell (FC), a battery storage system and a bidirectional DC/AC grid converter. The integration of multiple power sources like renewables leads to techno-economical challenges including power quality, stability, fuel consumption, and efficiency. The proposed EMS is based on the salp swarm algorithm (SSA). This algorithm has been implemented because of considerable advantages such as its convergence properties and its reduced computing complexity. The step-by-step design of the proposed method is detailed. Then HIL tests are performed to validate the proposed EMS performances. The performance of the proposed EMS is compared with the state machine control strategy (SMC) in terms of system efficiency and fuel consumption where the obtained results prove the superiority of the proposed EMS (5.2 % fuel saving). Regarding the power quality, the proposed EMS is compared with EMS based PSO to investigate the optimizer influence, the obtained results confirm the ability of the proposed EMS to provide a superior power quality. Hence, the proposed EMS responds to the power systems challenges including power quality, fuel-saving and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.