Abstract
We study an optimal consumption, leisure, and investment problem over a finite horizon in a continuous-time financial market with partial borrowing constraints. The agent derives utility from consumption and leisure, with preferences represented by a Cobb–Douglas utility function. The agent allocates time between work and leisure, earning wage income based on working hours. A key feature of our model is a partial borrowing constraint that limits the agent’s debt capacity to a fraction of the present value of their maximum future labor income. We employ the dual-martingale approach to derive the optimal consumption, leisure, and investment strategies. The problem reduces to solving a variational inequality with a free boundary, which we analyze using analytical and numerical methods. We provide an integral equation representation of the free boundary and solve it numerically via a recursive integration method. Our results highlight the impact of the borrowing constraint on the agent’s optimal decisions and the interplay between labor supply, consumption, and portfolio choice.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have