Abstract

In this paper, an optimal control design strategy for guaranteeing consensus achievement in a network of multiagent systems is developed. Minimization of a global cost function for the entire network guarantees a stable consensus with an optimal control effort. In solving the optimization problem, it is shown that the solution of the Riccati equation cannot guarantee consensus achievement. Therefore, a linearmatrix-inequality (LMI) formulation of the problem is used to address the optimization problem and to simultaneously resolve the consensus achievement constraint. Moreover, by invoking an LMI formulation, a semidecentralized controller structure that is based on the neighboring sets, i.e., the network underlying graph, can be imposed as an additional constraint. Consequently, the only information that each controller requires is the one that it receives from agents in its neighboring set. The global cost function formulation provides a deeper understanding and insight into the optimal system performance that would result from the global solution of the entire network of multiagent systems. Simulation results are presented to illustrate the capabilities and characteristics of our proposed multiagent team in achieving consensus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.