Abstract
The dynamic response of a floating structure subjected to underwater explosion is greatly complicated by the explosion of a high explosive, propagation of shock wave, complex fluid–structure interaction phenomena, and the dynamic behavior of the floating structures. A numerical investigation has been carried out to examine the behavior of stiffened steel plates subjected to shock loads resulting from an Underwater Explosion (UNDEX). The aim of this work is to obtain the optimal configuration to resist underwater shock loading. A non-linear dynamic numerical analysis of the underwater explosion phenomena associated with different geometrical stiffened steel plates is performed using the ABAQUS/Explicit finite element program. Special emphasis is focused on the evolution of mid-point displacements. Further investigations have been performed to study the effect of including material damping and the rate-dependant material properties at different shock loads. The results indicate that stiffener configurations and shock loads affect greatly the overall performance of steel plates and sensitive to the material data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.